Mizar/記号のソースを表示
←
Mizar/記号
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
{{Nav}} {| class="wikitable sortable" ! !! !! 数学記号!! !! !! !! !!意味!! !!説明 !! [Tex] !! [mizar] !! 定義ファイル!! !![Mizar]使用法 !! 使用法の意味 |- | || || 数学記号 || || || || || 意味 || || 説明 || [Tex] || [mizar] || 定義ファイル || || Mizar使用法[usage] || [usage]使用法意味 || |- |1 || 0 || <Logical notations> || || || || || || || || || || || || || || |- |1 || 1 || ¬ || || || || || negation || 否定 || 「¬P」は「命題 P が偽」という命題を表す。 || \neg || not || (build in Mizar system) || || not P || [not P] || |- |1 || 1.1 ||  ̄ || || || || || negation || 否定 || || \bar{P} || not || (build in Mizar system) || || not P || [not P] || |- |1 || 1.2 || ~ || || || || || negation || 否定 || || || not || (build in Mizar system) || || not P || [not P] || |- |1 || 2 || ∧ || & || || || || and (conjunction) || 論理積 || 「A ∧ B」は「命題 A と命題 B がともに真」という命題を表す。 || \wedge || & || (build in Mizar system) || || A & B || [A and B] || |- |1 || 3 || ∨ || || || || || or (disjunction) || 論理和 || 「A ∨ B」は「命題 A と命題 B の少なくとも一方は真」という命題を表す。 || \vee || or || (build in Mizar system) || || A or B || [A or B] || |- |1 || 4 || → || ⇒ || ⊂ || ⊆ || || implication || 論理包含、導出 || 「A ⇒ B」は、「命題 A が真なら必ず命題 B も真」という命題を表す。A が偽の場合は A ⇒ B は真であることに注意が必要。 || \Rightarrow || implies || (build in Mizar system) || || A implies B || [A implies B] || |- |1 || 4.1 || ⊂ || ⊆ || || || || holds || 論理包含 || 「A⊂B」と「A ⇒ B」,「¬A∨B」は同値である || \subseteqq \subset || holds || (build in Mizar system) || || A holds B || [A holds B] || |- |1 || 5 || ⇔ || || || || || equivalence || 同値 || 「A ⇔ B」は A と B の真偽が必ず一致することを意味する。 || \Leftrightarrow || iff || (build in Mizar system) || || A iff B || [A is equivalent to B] || |- |1 || 6 || ∀ || || || || || for all || 全称限量記号 || しばしば ∀ x ∈ S; P(x) のように書かれ、集合 S の任意の元 x に対して命題 P(x) が成立することを表す。 || \forall || for || (build in Mizar system) || 1 || for a holds P || [for every a, P holds.] || |- |1 || 6.1 || || || || || || || || || || || || 2 || for a being set holds P || [For every a which is a set, P holds.] || |- |1 || 6.2 || || || || || || || || || || || || 3 || for a, b being set holds P || [For every a, b which are sets, P holds.] || |- |1 || 6.3 || || || || || || || || || || || || 4 || for a being set st P holds Q || [For every set a satisfied with P, Q holds.] || |- |1 || 7 || ∃ || || || || || there exists || 存在限量記号 || しばしば ∃ x ∈ S; P(x) のように書かれ、集合 S の中に命題 P(x) を成立させるような元 x が少なくとも1つ存在することを表す。 || \exists || ex || (build in Mizar system) || 1 || ex a || [There exists a.] || |- |1 || 7.1 || || || || || || || || || || || || 2 || ex a st P || [There exists a such that P holds.] || |- |1 || 7.2 || || || || || || || || || || || || 3 || ex a being set st P || [There exists a set a such that P holds.] || |- |1 || 7.3 || ∃1 || ∃! || || || || || 一意的に存在 || しばしば ∃1 x ∈ S; P(x) のように書かれ、集合 S の中に命題 P(x) を成立させるような元 x が唯1つ存在することを表す。 || || || || || || || |- |1 || 8 || T || t || true || TRUE || 1 || truth || || || || not contradiction || (build in Mizar system) || || A & not contradiction || [A and TRUE] || |- |1 || 8.1 || || || || || || || || || || TRUE || (margrel:def 14) || || TRUE = 1 || [TRUE is equal to 1.] || |- |1 || 8.2 || T || || || || || || || || \top || TRUE || (margrel:def 14) || || TRUE = 1 || [TRUE is equal to 1.] || |- |1 || 9 || F || f || falsum || FALSE || 0 || falsity, falsum || || || || contradiction || (build in Mizar system) || || A implies contradiction || [A implies FALSE] || |- |1 || 9.1 || || || || || || || || || || FALSE || (margrel:def 13) || || FALSE = 0 || [FALSE is equal to 0.] || |- |1 || 9.2 || ⊥ || || || || || || || || \bot || FALSE || (margrel:def 13) || || FALSE = 0 || [FALSE is equal to 0.] || |- |1 || 10 || ∴ || || || || || || 結論 || 文頭に記され、その文の主張が前述の内容を受けて述べられていることを示す。 || \therefore || || || || || || |- |1 || 11 || ∵ || || || || || || 理由・根拠 || 文頭に記され、その文の内容が前述の内容の理由説明であることを示す。それゆえ。 || \because || then || || || A; then B; || || |- |1 || 12 || := || :⇔ || || || || || 定義 || 「A := X」は、A という記号の意味するところを、X と定義することである。「A :⇔ X」とも書く。 || || || || || || || |- |1 || 13 || || || || || || || || よって、それ故に、故に || || then || || || || || |- | || || || || || || || || || || || || || || || || |- |2 || 0 || <The notations of set theory> || || || || || || || || || || || || || || |- |2 || 0.1 || {x ∈ S | P(x)} || || || || || || || S の元のうち、命題 P(x) が真であるもの全てを集めた集合。必要がなければ「∈ S」は省略する。 || || || || || || || |- |2 || 1 || ∈ || || || || || element (of set) || 集合に属すること || 「x ∈ S」は、x が集合 S の元であることを意味する。必要に応じて「S ∋ x」とも書くが、こちらには S が主語であるようなニュアンスを伴うこともある。 || \in || in || (hidden:pred 1) || || a in b || [a is an element of b: a belongs to b.] || |- |2 || 1.1 || ∋ || || || || || || || || || || || || || || |- |2 || 1.2 || <math>\notin</math> || || || || || || ∈ の否定 || 「¬(x ∈ S)」を「x ? S」と書く。 || \not\in || || || || || || |- |2 || 1.3 || ? || <math>\not\ni</math> || || || || || ∋ の否定 || 「¬(S ∋ x)」を「S ? x」と書く。 || \not\ni || || || || || || |- |2 || 2 || = || || || || || equality (of set) || 集合の一致 || 「S = T」は集合 S と集合 T が等しいことを示す。 || = || = || (hidden:pred 2) || || a = b || [a is equal to b.] || |- |2 || 3 || ≠ || || || || || the negation of equality (of set) || =の否定 || || \neq || <> || (hidden:prednot 2) || || a <> b || [a is not equal to b.] || |- |2 || 4 || { , } || || || || || finite set with elements || || || || { , } || (tarski :def 1, etc.) || 1 || {a} || [set with an element a.] || |- |2 || 4.1 || || || || || || || || || || || || 2 || {a, b} || [set with elements a, b] || |- |2 || 5 || ⊆ || || || || || relation of inclusion (of set) || 部分集合 || 「S ⊆ T」は S が T の部分集合であることを意味する。必要に応じて「T ⊇ S」とも書く。他も同じ。 || \subseteqq || c= || (tarski:def 3) || || a c= b || [a is included in b: b includes a: a is a subset of b.] || |- |2 || 5.1 || ⊇ || || || || || || || || \supseteqq || || || || || || |- |2 || 5.2 || ? || <math>\varsubsetneqq</math> || || || || || || || \varsubsetneqq || || || || || || |- |2 || 5.3 || ? || <math>\varsupsetneqq</math> || || || || || || || \varsupsetneqq || || || || || || |- |2 || 6 || ∪ || || || || || union (of set) || || 和集合 || \bigcup || union || (tarski:def 3) || || union a || [the union of a] || |- |2 || 7 || ∩ || || || || || intersection (of set) || || 積集合 || \bigcap || meet || (setfam_1:def 1) || || meet a || [the meet of a] || |- |2 || 8 || [ , ] || || || || || ordered pair || || || || [ , ] || (tarski:def 5) || || [a, b] || [the ordered pair of a and b] || |- |2 || 9 || ? || <math>\emptyset</math> || || || || empty set || || || \emptyset || { } || (xbool_0:def 1) || || { } || [{ } has no element.] || |- |2 || 10 || ∪ || || || || || union (of two sets) || || || \cup || \/ || (xbool_0:def 2) || || a \/ b || [the union of a and b] || |- |2 || 11 || ∩ || || || || || intersection (of two sets) || || || \cap || /\ || (xbool_0:def 3) || || a /\ b || [the intersection of a and b] || |- |2 || 12 || \ || || || || || difference (of two sets) || || || || \ || (xbool_0:def 4) || || a \ b || [the set { x : x is an element of a and x is not an element of b}] || |- |2 || 13 || ⊂ || || || || || relation of proper subset( of set) || 真部分集合 || ⊂ は真部分集合の場合のみを表す。 ただし、⊂ に「等しい場合」を含む流儀もあり、その場合、真部分集合であることを示すには \subsetneq を用いる。 || \subset || c< || (xbool_0:def 8) || || a c< b || [a is a proper subset of b] || |- |2 || 13.1 || ⊃ || || || || || || || || \supset || || || || || || |- |2 || 14 || <math>( )^c</math> || || || || || complement (of set) || || 補集合 || (a)^c || ` || (subset_1:def 5) || || a ` || [the complement of a] || |- |2 || 14.1 ||  ̄ || || || || || complement (of set) || || 補集合 || \bar{a} || ` || (subset_1:def 5) || || a ` || [the complement of a] || |- |2 || 15 || × || || || || || direct product of (sets) || || || || [:,:] || (zfmisc_1:defs 3) || 1 || [:a, b:] || [the direct product of a and b] || |- |2 || 15.1 || || || || || || || || || || || || 2 || [:a, b, c:] || [the direct product of a, b and c] || |- |2 || 16 || P ( ) || || || || || power set (of set) || || || || bool || (zfmisc_1:def 1) || || bool a || [the power set of a] || |- |2 || 17 || { x : P } || || || || || the set of elements x such that P holds ) || || || \{ x:P\} || { x : P } || (build in Mizar system) || 1 || { x : P } || [the set of elements x such that P holds] || |- |2 || 17.1 || || || || || || || || || || || || 2 || { x where P : Q} || [the set of element x satisfied with P such that Q holds] || |- | || || || || || || || || || || || || || || || || |- |3 || 0 || <The notations of the sets of numbers> || || || || || || || || || || || || || || |- |3 || 1 || N || <math>\mathbb{N}</math> || || || || the set of natural numbers with 0 || || {0,1,2,3,…,∞} || \mathbb{N} || NAT || (numbers:funcnod 1) || || 0 in NAT || [0 is an element of N.] || |- |3 || 2 || ω || <math>\mathbb{\omega}</math> || || || || the least set of limit ordinals || || {0,1,2,3,…,∞}、NAT:自然数と同じ || \mathbb{\omega} || omega || (ordinal2:def 5) || || 0 in omega || [0 is an element of ω.] || |- |3 || 3 || Z || <math>\mathbb{Z}</math> || || || || the set of integers || || {-∞,…,-2,-1,0,1,2,…,∞} || \mathbb{Z} || INT || (numbers:def 4) || || NAT c= INT || [N is a subset of Z.] || |- |3 || 4 || Q || <math>\mathbb{Q}</math> || || || || the set of rational numbers || || || \mathbb{Q} || RAT || (numbers:def 3) || || NAT c= RAT || [N is a subset of Q.] || |- |3 || 5 || R || <math>\mathbb{R}</math> || || || || the set of real numbers || || || \mathbb{R} || REAL || (numbers:def 1) || || RAT c= REAL || [Q is a subset of R.] || |- |3 || 6 || C || <math>\mathbb{C}</math> || || || || the set of complex numbers || || || \mathbb{C} || COMPLEX || (numbers:def 2) || || REAL c= COMPLEX || [R is a subset of C.] || |- |3 || 7 || On || <math>\mathbb{On}</math> || || || || the set of ordinals || || || \mathbb{On} || On || (ordinal2:def 2) || || omega c= On || [ω is a subset of On.] || |- | || || || || || || || || || || || || || || || || |- |4 || 0 || <The notations for functions (relations)> || || || || || || || || || || || || || || |- |4 || 1 || dom || || || || || domain (of function (relation)) || || 定義域 || || dom || (relat_1:def 4) || || dom f || [dom f is the domain of f.] || |- |4 || 2 || im || || || || || (rng) range (of function (relation)) || || 値域 || || rng || (relat_1:def 5) || || rng f || [rng f is the range of f.] || |- |4 || 3 || <math>\left( r \right)^{-1}</math> || || || || || inverse (of relation) || || 逆数 || \left( r \right)^{-1} || ~ || (relat_1:def 7) || || r ~ || [r ~ is the inverse relation of r.] || |- |4 || 4 || <math>\left( f \right)^{-1}</math> || || || || || inverse (of function) || || 逆関数 || \left( f \right)^{-1} || “ || (relat_1:def 14) || || f “ || [f “ is the inverse relation of f.] || |- |4 || 5 || ? || <math>\circ</math> || || || || composition (of function (relation)) || || 関数どうしの演算 || \circ || * || (relat_1:def 8) || || f * g || [f * g is the composition of f and g.] || |- |4 || 6 || 1/f || || || || || the reciprocal of function f || || || || ^ || (rfunct_1:def 8) || || f ^ || [f ^ is the reciprocal of function f , that is, for every x, (f^)(x)=1/(f.x).] || |- |4 || 7 || a・f || af || || || || scalar product of a scalar a and a real function f || || || || a (#) f || (seq_1:def 5) || || (a (#) f) .b = a * (f.b) || [ (af)(b) = a(f(b) ) ] || |- |4 || 7.1 || || || || || || || || || || a “ f || (seq_1:def 5) || || (a “ f) .b = a * (f.b) || [ (af)(b) = a(f(b) ) ] || |- |4 || 8 || + || || || || || addition of functions || || || + || + || (seq_1:def 3) || || f + g || [f + g is addition of functions, that is , for every x, (f + g)(x) = f(x) +g(x).] || |- |4 || 9 || - || || || || || subtraction of functions || || || - || - || (seq_1:def 4) || || f - g || [f - g is subtraction of functions, that is , for every x, (f - g)(x) = f(x) - g(x).] || |- |4 || 10 || ・ || || || || || multiplication of functions || || || \cdot || (#) || (seq_1:def 1) || || f (#) g || [f (#)g is product of functions, that is , for every x, (f (#) g )(x) = f(x)・g(x).] || |- |4 || 11 || f/g || || || || || fraction of functions || || || || / || (rfunct_1:def 4) || || f/g || [f/g is fraction of functions, that is , for every x, (f/g)(x)=(f(x)/g(x)).] || |- |4 || 12 || - || || || || || the inverse of function with respect to addition || || || || - || (seq_1:def 7) || || - f || [-f is inverse of function with respect to addition, that is , for every x, (-f )(x) = -f(x) .] || |- |4 || 13 || | || || || || || restriction (of function (relation)) || || || \mid || | || (relat_1:def 11) || || f|a || [f | a? is the restriction of f with respect to a.] || |- |4 || 14 || f (a) || || || || || image of a value a (with respect to function (relation) f ) || || || || f.a || (funct_1:def 4) || || f.a || [f.a is the image of a with respect to f.] || |- |4 || 14.1 || <math>a_i</math> || || || || || image of natural number i of values || || || \a_i || a.i || (funct_1:def 4) || || a.i || || |- |4 || 15 || f (A) || || || || || image of set A of values (with respect to function (relation) f ) || || || || f .: A || (relat_1:def 13) || || f.:A || [f.:A is the image of set A of values with respect to f.] || |- |4 || 16 || Hom(X, Y) || || || || || the set of functions with domain X and range Y || || || || Funcs( , ) || (funct_2:def 2) || || f in Funcs(X, Y) implies rng f = Y || [(f is an element of Hom(X, Y)) implies rng f = Y.] || |- | || || || || || || || || || || || || || || || || |- |5 || 0 || <The notations of arithmetic> || || || || || || || || || || || || || || |- |5 || 1 || + || || || || || addition || || || + || + || (xcmplx_0:def 4) || || a + b || [a + b is the sum of a and b.] || |- |5 || 2 || ・ || || || || || multiplication || || || \cdot || * || (xcmplx_0:def 5) || || a * b || [a * b is the product of a and b.] || |- |5 || 2.1 || × || || || || || multiplication || || || \times || * || || || || || |- |5 || 3 || - || || || || || subtraction || || || - || - || (xcmplx_0:def 8) || || a - b || [a - b is the difference of a and b.] || |- |5 || 4 || - || || || || || negative sign (minus sign) || || || - || - || (xcmplx_0:def 6) || || -a || [-a is a negative number.] || |- |5 || 5 || / || || || || || fraction || 分数 || || \frac{b}{a} || / || (xcmplx_0:def 9) || || a / b || [a / b is a fraction with numerator a and denominator b.] || |- |5 || 6 || 1/a || || || || || the reciprocal (number) of a || 逆数 || || 1/a || “ || (xcmplx_0:def 7) || || a“ || [a“ is the reciprocal (number) of a, that is 1/a.] || |- |5 || 7 || ÷ || || || || || division || || || \div || div || (int_1:def 7) || || a div b || [a div b is the quotient when b devides a.] || |- |5 || 8 || mod || || || || || residue || || || || mod || (int_1:def 8) || || a mod b || [a mod b is the remainder when b devides a.] || |- |5 || 9 || | || || || || || devides || || || \mid || devides || (int_1:def 9) || || a|b || [a | b means that a devides b.] || |- |5 || 10 || lcm || || || || || the least common multiple (of two natural numbers) || || || || lcm || (nat_1:def 4 || || a lcm b || [a lcm b is the least common multiple of a and b.] || |- |5 || 11 || lcm || || || || || the least common multiple (of two integers) || || || || lcm’ || (int_2:def 2 || || a lcm’ b || [a lcm b is the least common multiple of |a| and |b|.] || |- |5 || 12 || gcd || || || || || the greatest common divisor of two natural numbers) || || || \gcd || hcf || (nat_1:def 5) || || a hcf b || [a gcd b is the greatest common divisorof a and b.] || |- |5 || 13 || gcd || || || || || the greatest common divisor (of two integers) || || || \gcd || gcd || (nat_1:def 5) || || a gcd b || [a gcd b is the greatest common divisor of |a| and |b|.] || |- |5 || 14 || ‘ || || || || || successor function || || || || succ || (ordinal1:def 1) || || succ a || [succ a is the successor of a] || |- |5 || 15 || ≦ || || || || || inequality with equality || || || \leqq || <= || (xreal_0:def 2) || || 1 <= 2 || [1 is smaller than 2.] || |- |5 || 16 || > || || || || || inequality || || || > || > || (xreal_0:prednot 4) || || 2 > 1 || [2 is larger than 1.] || |- |5 || 17 || ≧ || || || || || inequality with equality || || || \geqq || => || (xreal_0:prednot 2) || || 2 => 1 || [2 is larger than 1.] || |- |5 || 18 || < || || || || || inequality || || || < || < || (xreal_0:prednot 2) || || 1 < 2 || [1 is smaller than 2.] || |- |5 || 19 || min || || || || || minimum || 最小値 || || \min || min || (extreal2:def 1) || || min(2,3) = 2 || [2 is minimum with respect to 2 and 3.] || |- |5 || 20 || max || || || || || maximum || 最大値 || || \max || max || (extreal2:def 2) || || max(2,3) = 3 || [3 is maximum with respect to 2 and 3.] || |- |5 || 21 || ! || || || || || factorial (of a natural number) || 階乗 || || ! || ! || (sin_cos:def 30) || || a ! || [a ! is the factorial of a natural number a] || |- |5 || 22 || [ ] || || || || || Gauss'symbol || || || [a] || [\ /] || (int_1:def 4) || || [\a/] || [[\ a/] is [a].」 || |- |5 || 23 || a≡b(mod c) || || || || || a and b are congruent modulo c || || || \equiv || , are_congruent_mod || (int_1:def 3) || || a , b are_congruent_mod c || [(a , b are_congruent_mod c) means (a ≡ b (mod c) )] || |- | || || || || || || || || || || || || || || || || |- |6 || 0 || <The notations of numbers and special constants> || || || || || || || || || || || || || || |- |6 || 1 || 0 || || || || || numeral zero || || || 0 || 0 || || || || || |- |6 || 2 || 1 || || || || || numeral one || || || 1 || 1 || || || || || |- |6 || 2.1 || 1 || || || || || numeral one || || || 1 || one || (ordinal2:def 2) || || || || |- |6 || 3 || 2 || || || || || numeral two || || || 2 || 2 || || || || || |- |6 || 4 || 3 || || || || || numeral three || || || 3 || 3 || || || || || |- |6 || 5 || 4 || || || || || numeral four || || || 4 || 4 || || || || || |- |6 || 6 || 5 || || || || || numeral five || || || 5 || 5 || || || || || |- |6 || 7 || 6 || || || || || numeral six || || || 6 || 6 || || || || || |- |6 || 8 || 7 || || || || || numeral seven || || || 7 || 7 || || || || || |- |6 || 9 || 8 || || || || || numeral eight || || || 8 || 8 || || || || || |- |6 || 10 || 9 || || || || || numeral nine || || || 9 || 9 || || || || || |- |6 || 11 || π || || || || || circle ratio || || || \pi || PI || (sin_cos:def 30) || || 3 < PI || [πis greater than 3.] || |- |6 || 12 || e || || || || || Napier’s number || || || || number_e || (power:def 4) || || 2 < number_e || [e is greater than 2.] || |- |6 || 13 || i || || || || || imaginary number || || || || <i> || (xcmplx_0:def 1) || || || || |- |6 || 14 || ∞ || || || || || infinity || || || \infty || +infty || (supinf_1:def 1) || || || || |- |6 || 14.1 || -∞ || || || || || infinity || || || ?\infty || ?infty || (supinf_1:def 3) || || || || |- |6 || 15 || +∞ || || || || || infinity || || || +\infty || +infty || (supinf_1:def 1) || || || || |- |6 || 16 || -∞ || || || || || infinity || || || ?\infty || ?infty || (supinf_1:def 3) || || || || |- | || || || || || || || || || || || || || || || || |- |7 || 0 || <The notations for elementary functions and complex numbers> || || || || || || || || || || || || || || |- |7 || 1 || sin || || || || || sin || || || \sin || sin || (sin_cos:def 30) || || sin a || [the sine of a.] || |- |7 || 2 || cos || || || || || cos || || || \cos || cos || (sin_cos:def 22) || || cos a || [the cosine of a.] || |- |7 || 3 || tan || || || || || tan || || || \tan || tan || (sin_cos4:def 1) || || tan a || [the tangent of a.] || |- |7 || 4 || sec || || || || || sec || || || \sec || sec || (sin_cos4:def 4) || || sec a || [the second of a.] || |- |7 || 5 || cot || || || || || cot || || || \cot || cot || (sin_cos4:def 2) || || cot a || [the cotangent of a.] || |- |7 || 6 || arcsin || || || || || arcsin || || || \arcsin || arcsin || (sin_cos6:def 1) || || arcsin a || [the arcsine of a.] || |- |7 || 7 || arccos || || || || || arccos || || || \arccos || arccos || (sin_cos6:def 3) || || arccos a || [the arccosine of a.] || |- |7 || 8 || <math>e^x</math> || || || || || exponential function (of real values) || || || \exp || exp || (sin_cos:def 26) || || exp x || [the exponential function of x] || |- |7 || 9 || Re || || || || || the real part of a complex number || || || || Re || (complex1:dfs 1) || || Re a || [the real part of a complex number a] || |- |7 || 10 || Im || || || || || the imaginary part of a complex number || || || || Im || (complex1:dfs 2) || || Im a || [the imaginary part of a complex number a] || |- |7 || 11 || √ || || || || || positive square root (of a real number) || || || \sqrt{} || sqrt || (square_1:def 4) || || sqrt a || [the square root of a] || |- |7 || 12 || <math>\sqrt[n]{}</math> || || || || || positive n-powered root (of a real number) || || || \sqrt[n]{} || n-Root || (prepower:def 3) || || 3 -Root a || [the positive cubic root of a] || |- |7 || 13 || <math>()^2</math> || || || || || squre (of a number) || || || ^2 || ^2 || (square_1:def 3) || || a^2 || [the square of a] || |- |7 || 13.1 || <math>()^2</math> || || || || || squre (of a number) || || || ^2 || sqr || (square_1:def 3) || || a^2 || [the square of a] || |- |7 || 14 || <math>a^b</math> || || || || || a real number with exponent of a natural number || || || a^b || |^ || (newton:def 1) || || a |^ b || [the b times power of real number a] || |- |7 || 14.1 || <math>a^b</math> || || || || || a real number with exponent of an integer || || || a^b || #Z || (prepower:def 4) || || a #Z b || [the b times power of real number a] || |- |7 || 14.2 || <math>a^b</math> || || || || || a real number with exponent of a rational namber || || || a^b || #Q || (prepower:def 5) || || a #Q b || [the b power of real number a] || |- |7 || 14.3 || <math>a^b</math> || || || || || a real number with exponent of a real number || || || a^b || #R || (prepower:def 8) || || a #R b || [the b power of real number a] || |- |7 || 14.4 || <math>a^b</math> || || || || || a real number with exponent of a real number || || || a^b || to_power || (power:def 2) || || a to_power b || [the b power of real number a] || |- |7 || 15 || || || || || || || absolute value (of a complex number) || || || \mid a \mid || abs || (complex1:func 18) || || abs a || [the absolute value of a] || |- |7 || 16 ||  ̄ || || || || || conjugate complex number (of complex number) || || || || *’ || (complex1:def 15) || || <i>*’ || [<i>*’ = -</i>] || |- |7 || 17 || log || || || || || logarithm || || || \log || log( , ) || (power:def 3) || || log(a,b) || [log(a,b) is a logarithm with base of logarithm a and anti-logarithm b.] || |- |7 || 18 || a + bi || || || || || a complex number with its real part a and its imaginary part b ), where a and b are real numbers || || || || [*a,b*] || (arytm_0:def 7) || || for a being Element of REAL holds [*a,0*] in REAL || [It means that for a∈R,a+0i∈R holds.] || |- |7 || 19 || arg || || || || || the argument of a complex number || || || || Arg || (comptrig:def 1) || || Arg a || [Arg a is the argument of a complex number a.] || |- | || || || || || || || || || || || || || || || || |- |8 || 0 || <The notations for limit and series> || || || || || || || || || || || || || || |- |8 || 1 || lim || || || || || limit of complex sequence || || || \lim || lim || (comseq_2:def 5) || 1 || lim a || [the limit of complex sequence a] || |- |8 || 1.1 || || || || || || || || || || || || 2 || lim (a+b) = lim a + lim b || [This holds if a and b are convergent.] || |- |8 || 2 || ∑ || || || || || pertial sum of a real sequence || || || \sum || Percial_Sums || (series_1:def 1) || || Percial_Sums a || [pertial sum of real sequence a] || |- |8 || 3 || ∑ || || || || || sum of infinite series || || || \sum || Sum || (series_1:def 3) || 1 || Sums a || [sum of infinite series of a real sequence a] || |- |8 || 3.1 || || || || || || || || || || || || 2 || Sums a = lim Percial_Sums a || [The sum of infinite series of a real sequence a is equal to the limit of the pertial sum of it.] || |- |8 || 4 || →+∞ || || || || || (for a real sequence) divergent to the plus infinity || || || || (is) divergent_to+infty || (limfunc1:def 4) || || a is divergent_to+infty || [The real sequence a is divergent to the plus infinity, that is , a →+∞.] || |- |8 || 5 || →-∞ || || || || || (for a real sequence) divergent to the minus infinity || || || || (is) divergent_to-infty || (limfunc1:def 5) || || a is divergent_to-infty || [The real sequence a is divergent to the minus infinity, that is , a →-∞.] || |- |8 || 6 || <math>\lim_{x \to a} f(x) = b</math> || || || || || limit b of a real function(x → a ) || || || \lim_{x \to a} f(x) = b || lim( , ) || (limfunc3: def 4) || || lim(f ,a) = b || [f is convergent to b in a.] || |- |8 || 7 || <math>\lim_{x \to a+0 } f(x)= b</math> || || || || || limit b of a real function(x → a + 0 ) || || || \lim_{x \to a+0 } f(x)= b || lim_right( , ) || (limfunc2: def 8) || || lim_right(f ,a) = b || [f is right-convergent to b in a.] || |- |8 || 8 || <math>\lim_{x \to a-0 } f(x)= b</math> || || || || || limit b of a real function(x → a - 0 ) || || || \lim_{x \to a-0 } f(x)= b || lim_left( , ) || (limfunc2: def 7) || || lim_left(f ,a) = b || [f is left-convergent to b in a.] || |- |8 || 9 || <math>\lim_{x \to a } f(x)= +\infty</math> || || || || || a real function f is divergent to +∞(x → a) || || || \lim_{x \to a } f(x)= +\infty || is_divergent_to+infty_in || (limfunc3: def 2) || || f is_divergent_to+infty_in a || [f is divergent to +∞ in a.] || |- |8 || 10 || <math>\lim_{x \to a } f(x)= -\infty</math> || || || || || a real function f is divergent to -∞(x → a) || || || \lim_{x \to a } f(x)= -\infty || is_divergent_to-infty_in || (limfunc3: def 3) || || f is_divergent_to-infty_in a || [f is divergent to -∞ in a.] || |- |8 || 11 || <math>\lim_{x \to a+0 } f(x)= +\infty</math> || || || || || a real function f is divergent to +∞(x → a + 0 ) || || || \lim_{x \to a+0 } f(x)= +\infty || is_right_divergent_to+infty_in || (limfunc2:def 5) || || f is_ right_divergent_to+infty_in a || [f is right-divergent to +∞ in a.] || |- |8 || 12 || <math>\lim_{x \to a+0 } f(x)= -\infty</math> || || || || || a real function f is divergent to -∞(x → a + 0 ) || || || \lim_{x \to a+0 } f(x)= -\infty || is_right_divergent_to-infty_in || (limfunc2:def 6) || || f is_ right_divergent_to-infty_in a || [f is right-divergent to -∞ in a.] || |- |8 || 13 || <math>\lim_{x \to a-0 } f(x)= +\infty</math> || || || || || a real function f is divergent to +∞(x → a - 0 ) || || || \lim_{x \to a-0 } f(x)= +\infty || is_left_divergent_to+infty_in || (limfunc2:def 2) || || f is_ left_divergent_to+infty_in a || [f is left-divergent to +∞ in a.] || |- |8 || 14 || <math>\lim_{x \to a-0 } f(x)= -\infty</math> || || || || || a real function f is divergent to -∞(x → a - 0 ) || || || \lim_{x \to a-0 } f(x)= -\infty || is_left_divergent_to-infty_in || (limfunc2:def 3) || || f is_ left_divergent_to-infty_in a || [f is left-divergent to -∞ in a.] || |- |8 || 15 || <math>\lim_{x \to +\infty } f(x)= a</math> || || || || || limit of a real function(x → +∞ ) || || || \lim_{x \to +\infty } f(x)= a || lim_in+infty || (limfunc1:def 12) || || lim_in+infty f = a || [the limit a of a real function f in the plus infinity] || |- |8 || 16 || <math>\lim_{x \to -\infty } f(x)= a</math> || || || || || limit of a real function(x → -∞ ) || || || \lim_{x \to -\infty } f(x)= a || lim_in-infty || (limfunc1:def 13) || || lim_in-infty f = a || [the limit a of a real function f in the minus infinity] || |- |8 || 17 || <math>\lim_{x \to +\infty } f(x)= +\infty</math> || || || || || (for a real function) divergent to the plus infinity (x →+∞) || || || \lim_{x \to +\infty } f(x)= +\infty || (is) divergent_in+infty_to-infty || (limfunc1:def 7) || || f is divergent_in+infty_to-infty || [The real function f is divergent to the plus infinity when x →+∞.] || |- |8 || 18 || <math>\lim_{x \to +\infty } f(x)= -\infty</math> || || || || || (for a real function) divergent to the minus infinity (x →+∞) || || || \lim_{x \to +\infty } f(x)= -\infty || (is) divergent_in+infty_to-infty || (limfunc1:def 8) || || f is divergent_in+infty_to-infty || [The real function f is divergent to the minus infinity when x →+∞.] || |- |8 || 19 || <math>\lim_{x \to -\infty } f(x)= +\infty</math> || || || || || (for a real function) divergent to the plus infinity (x →-∞) || || || \lim_{x \to -\infty } f(x)= +\infty || (is) divergent_in-infty_to+infty || (limfunc1:def 10) || || f is divergent_in-infty_to+infty || [The real function f is divergent to the plus infinity when x →-∞.] || |- |8 || 20 || <math>\lim_{x \to -\infty } f(x)= -\infty</math> || || || || || (for a real function) divergent to the minus infinity (x →-∞) || || || \lim_{x \to -\infty } f(x)= -\infty || (is) divergent_in-infty_to-infty || (limfunc1:def 11) || || f is divergent_in-infty_to-infty || [The real function f is divergent to the minus infinity when x →-∞.] || |- | || || || || || || || || || || || || || || || || |- |9 || 0 || <The notations for differentiation and integral> || || || || || || || || || || || || || || |- |9 || 1 || ( , ) || || || || || open interval || || || || ]. , .[ || (rcomp_1:def 2) || || ].0 , 1.[ || [This is the open interval between 0 and 1.] || |- |9 || 2 || ] , [ || || || || || open interval || || || || ]. , .[ || (rcomp_1:def 2) || || ].0 , 1.[ || [This is the open interval between 0 and 1.] || |- |9 || 3 || f’(a) || || || || || differential coefficient of real function f in a || || || || diff(f, a) || (fdiff_1:def 6) || || diff(f + g, a) = diff(f, a) + diff(g, a) || [This means (f + g)’(a) = f’(a) + g’(a)] || |- |9 || 4 || f ‘ (x) (x∈a) || || || || || the differential of a real function f differentiable on a ⊆ R || || || || f `|a || (fdiff_1:def 8) || || f `|REAL || [This is the differential of the real function f differentiable on R.] || |- |9 || 5 || f ‘ || || || || || the differential of a real function f differentiable on R || || || || f `|REAL || (fdiff_1:def 8) || || (f `|REAL).a || [This is the differential coefficient of the real function f in a .] || |- |9 || 6 || ∫f(x)dx || || || || || indefinite Riemann integral of a real function || || || \int f(x) dx || integral || [integra1:def 18] || || || || |- | || || || || || || || || || || || || || || || || |- |10 || 0 || <The notations for geometry> || || || || || || || || || || || || || || |- |10 || 1 || AB || || || || || line through A and B in 3 dimentional Euclidian space || || || || Line( , ) || (euclid_1:def 1) || 1 || Line(A,B) st A, B in REAL 3 || [line through A and B in 3 dimentional Euclidian space, where A, B are real 3-tuples.] || |- |10 || 1.1 || || || || || || || || || || || || 2 || for A, B st A, B in REAL 3 holds Line(A,B) = Line(B,A) || [line through A and B is equal to line through B and A.] || |- | || || || || || || || || || || || || || || || || |- |11 || 0 || <The notations for probability> || || || || || || || || || || || || || || |- |11 || 1 || Pr || || || || || probability || || || || Probability (of ) || (prob_1:def 13) || || Probability of X || [This means Pr(X), that is, the probability of an event X.] || |- | || || || || || || || || || || || || || || || || |- |12 || 0 || <The notations for vectors and matrices> || || || || || || || || || || || || || || |- |12 || 1 || <math>A_{n m}</math> || || || || || A is an n×m matrix over R || || || A_{n m} || A is Matrix of n,m,REAL || (matrix_1: def 3) || || || || |- |12 || 2 || <math>A_{n m}</math> || || || || || A is an n×m matrix over C || || || A_{n m} || A is Matrix of n,m,COMPLEX || (matrix_1: def 3) || || || || |- |12 || 3 || <math>(\vec{a})</math> || || || || || 1×…matrix a (line vector) || || || (\vec{a}) || <*a*> || (matrix_1:11) || || || || |- |12 || 4 || <math>(\vec{a})</math> || || || || || 1×nmatrix a (line vector) || || || (\vec{a}) || <*a*> st width <*a*> = n || (matrix_1:11;matrix_1: def 4) || || || || |- |12 || 4 || <math>(\vec{a})^t</math> || || || || || …×1 matrix a (column vector) || || || (\vec{a})^t || <*a*>@? || (matrix_1:11; matrix_1: def 7 ) || || || || |- |12 || 5 || <math>(\vec{a})^t</math> || || || || || n×1 matrix a (column vector) || || || (\vec{a})^t || <*a*>@ st width <*a*> = n || (matrix_1:11; matrix_1: def 7 ) || || || || |- |12 || 6 || <math>\begin{pmatrix} \vec{a} \\ \vec{b} \end{pmatrix}</math> || || || || || 2×…matrix || || || \begin{pmatrix} \vec{a} \\ \vec{b} \end{pmatrix} || <*a,b*> || (matrix_1:12) || || || || |- |12 || 7 || <math>\begin{pmatrix} \vec{a} \\ \vec{b} \end{pmatrix}</math> || || || || || 2×n matrix || || || \begin{pmatrix} \vec{a} \\ \vec{b} \end{pmatrix} || <*a,b*> st width <*a,b*> = n || (matrix_1:12; matrix_1: def 4) || || || || |- |12 || 8 || <math>\begin{pmatrix} \vec{a} \\ \vec{b} \end{pmatrix}^t</math> || || || || || …×2 matrix || || || \begin{pmatrix} \vec{a} \\ \vec{b} \end{pmatrix}^t || <*a,b*>@ || (matrix_1:12; matrix_1: def 7) || || || || |- |12 || 9 || <math>\begin{pmatrix} \vec{a} \\ \vec{b} \end{pmatrix}^t</math> || || || || || n×2 matrix || || || \begin{pmatrix} \vec{a} \\ \vec{b} \end{pmatrix}^t || <*a,b*>@ st width <*a*> = n || (matrix_1:12; matrix_1: def 7) || || || || |- |12 || 10 || <math>(a)</math> || || || || || 1×1 matrix with element a matrix || || || (a) || <*<*a*>*> || (matrix_1:15) || || || || |- |12 || 11 || <math>\begin{pmatrix} a & b \end{pmatrix}</math> || || || || || 1×2 matrix with elements a and b || || || \begin{pmatrix} a & b \end{pmatrix} || <*<*a*>,<*b*>*> || (matrix_1:15) || || || || |- |12 || 12 || <math>\begin{pmatrix} a & b \\ c & d \end{pmatrix}</math> || || || || || 2×2 matrix with elements a, b, c and d || || || \begin{pmatrix} a & b \\ c & d \end{pmatrix} || <*<*a,b*>,<*c,d*>*> || (matrix_1:15) || || || || |- |12 || 13 || <math>\begin{pmatrix} a & b \\ c & d \end{pmatrix}</math> || || || || || 2×2 matrix with elements a, b, c and d || || || \begin{pmatrix} a & b \\ c & d \end{pmatrix} || (a,b)][(b,c) || (matrix_2:def 2) || || || || |- |12 || 14 || <math>a_{i j}</math> || || || || || (i, j)-element of a matrix a || || || a_{i j} || A*(i,j) || (matrix_1:def 6) || || || || |- |12 || 15 || <math>A^t</math> || || || || || transposed matrix of A || || || A^t || @ || (matrix_1:def 7) || || A@ || [A@ is the transposed matrix of A.] || |- |12 || 16 || + || || || || || addition of matrices || || || + || + || (matrix_1:def 7) || || a + b || [the sum of matrices a and b] || |- |12 || 17 || - || || || || || minus sign of matrix matrices || || || - || - || (matrix_1:def 13) || || -a || [the inverse of a matrix a with resprect to addition] || |- |12 || 18 || ・ || × || nothing || || || multiplication of matrices || || || || * || (matrix_3:def 4) || || a * b || [the product of matrices a and b] || |- |12 || 19 || ( , ) || < , > || || || || the inner product of finite sequences recognized as vectors || || || || “*” || (fvsum_1:def 10) || || a“*”b || [the inner product of finite sequences a and b recognized as vectors] || |- |12 || 20 || || || || || || the n-th line of a matrix a || || || || Line(a,n) || (matrix_1:def 8) || || || || |- |12 || 21 || || || || || || the n-th colum of a matrix a || || || || Col(a,n) || (matrix_1:def 9) || || || || |- |12 || 22 || O || || || || || n×m zero matrix || || || || 0.(n,m) || (matrix_1:def 11) || || || || |- |12 || 23 || E || I || || || || n×n unit matrix || || || || 1.(n,m) || (matrix_1:def 12) || || || || |- |12 || 24 || det a || || || || || the determinant of a matrix a || || || || Det || (matrix_1:def 12) || || Det a || [the determinant of a matrix a] || |- | || || || || || || || || || || || || || || || || |- | || || || || || || || || || || || || || || || || |- | || || {A} || || || || || || || 集合に属性を持たせる || || [#] || () || || [#]A [topologyの属性] || || |- | || || ⊂ || ⊆ || || || || || || Aの部分集合 || || Subset of A || || || Subset of A || || |- | || || || || || || || TopStruct (# carrier -> set,topology -> Subset-Family of the carrier #) || || TopStruct (# 領域,条件式 #) || || TopStruct(#X,T#) || (PRE_TOPC:) || || TopStruct(#X,T#) || || |- | || || || || || || || || || Aの和集合 || || union A || || || || || |- | || || || || || || || || || 順序集合 || || 1-sorted || || || || || |- | || || || || || || || || || Tの要素、範囲 || || the carrier of T || || || the carrier of T || || |- | || || || || || || || || || Aの補集合 || || {}A || || || || || |- | || || {A} || || || || || || || 集合A || || [#]A || || || || || |- | || || || || || || || || || 開集合X || || [#]X is open || || || || || |- | || || || || || || || || || 閉集合X || || [#]X is closed || || || || || |- | || || || || || || || || || 写像 || || Morphism || || || || || |- | || || || || || || || relation || || 関係 || || relation || || || || || |- | || || || || || || || reflexive || || 反射的 || || reflexive || || || || || |- | || || || || || || || symmetric || || 対称的 || || symmetric || || || |- | || || || || || || || transitive || || 推移的 || || transitive || || || |- | || || || || || || || antisymmetric || || 反対称的 || || antisymmetric || || || |- | || || || || || || || || || 一対一の対応 || || one-to-one || || || |- | || || || || || || || Cardinality || || 濃度 || || Cardinality || || || |- | || || || || || || || cardinal Number || || 基数 || || cardinal Number || || || |- | || || || || || || || finite set || || 有限集合 || || finite set || || || |- | || || (x0,x1,…,xn) || || || || || n-tuple || || n組の直積集合 || || n-tuple || || || |- | || || || || || || || Inverse mapping || || 逆写像 || || Inverse mapping || || || |- | || || || || || || || element || || 要素、元 || || Element || || || |- | || || || || || || || definition(定義) + predicate(述語) || || || || defpred || || || |- | || || || || || || || 述語(predicate) || || || || pred || || || |- | || || || || || || || then + thus || || || || hence || || || |- | || || || || || || || IDENTITY RELATION || || 同値関係 || || id || || || |- | || || || || || || || || || 概念の包含関係をしめすときに使う || || cluster || || || |- | || || || || || || || || || 内包 || || Int || TOPS_1 || || Int [#]A |- | || || ∂A || || || || || || || 外包 || || boundary || TOPS_1 || || A is boundary |- | || || |X1-X2| || || || || || || || X1,X2の距離 || || dist(X1,X2) || JGRAPH_1 || || dist(X1,X2) |- | || || || || || || || || || 距離空間 || || MetrSpace || || || |- | || || || || || || || || || 関数の要素 || || PartFunc || || || |- | || || bi || || || || || || || i番目の要素 || || b/.i || BINARITH || || |} {{Nav}} [[Category:Mizar|きこう]]
このページで使用されているテンプレート:
テンプレート:Nav
(
ソースを閲覧
)
Mizar/記号
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
議論
日本語
表示
閲覧
ソースを閲覧
履歴表示
その他
検索
案内
メインページ
最近の更新
おまかせ表示
MediaWiki についてのヘルプ
特別ページ
ツール
リンク元
関連ページの更新状況
ページ情報